Перевод: с английского на русский

с русского на английский

канал с характеристиками

  • 1 randomly varying channel

    канал с характеристиками, изменяющимися по случайному закону

    The English-Russian dictionary on reliability and quality control > randomly varying channel

  • 2 time-varying channel

    канал с характеристиками, изменяющимися во времени

    The English-Russian dictionary on reliability and quality control > time-varying channel

  • 3 time-varying channel

    Универсальный англо-русский словарь > time-varying channel

  • 4 randomly varying channel

    Универсальный англо-русский словарь > randomly varying channel

  • 5 randomly varying channel

    канал (обслуживания) с характеристиками, изменяющимися по случайному закону

    Англо-русский словарь по экономике и финансам > randomly varying channel

  • 6 time-varying channel

    канал (обслуживания) с характеристиками, изменяющимися во времени

    Англо-русский словарь по экономике и финансам > time-varying channel

  • 7 variable channel

    канал (обслуживания) с переменными характеристиками

    Англо-русский словарь по экономике и финансам > variable channel

  • 8 variable channel

    English-russian dctionary of contemporary Economics > variable channel

  • 9 degraded axis

    Авиасловарь > degraded axis

  • 10 variable channel

    English-Russian dictionary of computer science > variable channel

  • 11 randomly varying channel

    English-Russian dictionary of computer science > randomly varying channel

  • 12 variable channel

    The English-Russian dictionary on reliability and quality control > variable channel

  • 13 channel

    ˈtʃænl
    1. сущ.
    1) канал
    2) сток;
    сточная канава( искусственное сооружение, по которому стекает или течет вода) Syn: gutter
    3) пролив (English) Channel ≈ Ла-Манш
    4) русло;
    фарватер;
    проток
    5) перен. источник, путь;
    средство передачи Turning his abilities into that channel in which he was most likely to excel. ≈ Повернуть его способности в том направлении, где он мог бы достичь наибольшего успеха. back channelобходной (тайный) канал информации
    6) радио, телев. полоса частот;
    канал (телевизионный, радио) to change channelsпереключить на другой канал television channel, TV channel ≈ телевизионый канал
    7) тех. желоб;
    выемка;
    паз, шпунт;
    швеллер
    8) шотл. гравий Syn: gravel
    2. гл.
    1) проводить канал;
    рыть канаву The river has channelled its way through the rocks. ≈ Река проложила себе путь в скалах.
    2) перен. направлять в определенное русло, проводить через канал It would be a good thing to have someone to channel all the enquiries about her. ≈ Было бы неплохо, если бы кто-нибудь направил все касающиеся ее запросы по нужному каналу.
    3) строит. делать выемки, пазы ∙ channel off канал;
    - * for irrigation ирригационный канал русло, фарватер;
    проток;
    - rivers cut their own *s to the sea реки сами прокладывают себе путь к морю пролив Ла-Манш;
    - C. boat судно, совершающее рейсы между Великобританией и континентом;
    - C. fever тоска по дому канава;
    сток, сточная канава путь;
    источник, средство, канал;
    - through the usual *s из обычных источников, обычным путем;
    - ordinary diplomatic *s обычные дипломатические каналы;
    - *s of information источники информации;
    - * of communication путь доставки донесений;
    порядок представления сведений;
    путь подвоза;
    (специальное) канал связи;
    - *s of distribution порядок распределения;
    - the great *s of trade великие торговые пути;
    - your only chance of success lies through this * вы можете достигнуть успеха только этим путем;
    - he needs a new * for his activities ему нужно новое поле деятельности (американизм) (военное) инстанция;
    - the soldier made his request through *s солдат подал рапорт по команде (телевидение) канал передачи;
    - to change the * перейти на другой канал;
    (американизм) (разговорное) переменить тему разговора;
    - let's change the * давайте поговорим о чем-нибудь другом( компьютерное) канал ввода-вывода канал связи;
    - selector * селекторный канал желоб;
    выемка;
    паз шпунт швеллер (физическое) (радиотехника) полоса частот;
    разрешенный диапазон;
    звуковой тракт( шотландское) гравий проводить канал;
    рыть канаву;
    прорезывать каналами;
    - we ought to * this street to help water to flow away easily на этой улице надо прорыть канавы, чтобы облегчить сток воды пускать по каналу;
    направлять в русло;
    - aid must be *led through U.N. agencies помощь должна оказываться через учреждения ООН;
    - try to * your abilities into something useful постарайтесь направить свои таланты на что-нибудь полезное (строительство) делать выемки или пазы analog ~ вчт. аналоговый канал back ~ вчт. обратный канал backward ~ вчт. обратный канал block multiplexer ~ вчт. блок-мультиплексный канал broadband ~ широкополосный канал buffered ~ вчт. буферизованный канал bypass ~ вчт. обходной канал bypass ~ вчт. параллельный канал byte-at-a-time ~ вчт. канал с побайтовым обменом byte-multiplexer ~ вчт. байт-мультиплексный канал channel стр. делать выемки или пазы;
    channel off расходиться( в разных направлениях) ;
    растекаться ~ тех. желоб;
    выемка;
    паз, шпунт;
    швеллер ~ радио звуковой тракт ~ информационный канал ~ источник ~ канал;
    русло;
    фарватер;
    проток ~ вчт. канал ~ канал ~ канал передачи ~ канал связи ~ проводить канал;
    рыть канаву;
    the river has channelled its way through the rocks река проложила себе путь в скалах ~ проводить канал ~ пролив;
    the (English) Channel Ла-Манш ~ пролив;
    the (English) Channel Ла-Манш ~ пролив ~ пускать по каналу;
    перен. направлять в определенное русло ~ путь, источник;
    the information was received through the usual channels информация была получена обычным путем ~ путь, источник, средство ~ путь ~ сток;
    сточная канава ~ control block вчт. блок управления каналом ~ of distribution канал распределения ~ of distribution средство распределения ~ of sales канал сбыта channel стр. делать выемки или пазы;
    channel off расходиться (в разных направлениях) ;
    растекаться ~ program block вчт. блок канальной программы ~ status word вчт. слово состояния канала ~ waiting queue вчт. очередь к каналу channels in series вчт. последовательные каналы clock ~ вчт. канал синхронизации communication ~ вчт. канал связи cooperative ~s вчт. каналы производящие совместное обслуживание cooperative ~s вчт. объединенные каналы covert ~ вчт. незащищенный канал data ~ вчт. канал передачи данных data communication ~ вчт. канал передачи данных data link ~ вчт. канал передачи данных data transfer ~ вчт. канал передачи данных dedicated ~ вчт. выделенный канал dedicated ~ вчт. специальный канал direct ~ вчт. прямой канал discrete ~ вчт. дискретный канал distribution ~ канал распределения duplex ~ вчт. дуплексный канал fast ~ вчт. быстрый канал forward ~ вчт. прямой канал обмена free ~ вчт. незанятый канал free ~ вчт. свободный канал full ~ вчт. занятый канал half-duplex ~ вчт. полудуплексный канал idle ~ вчт. незанятый канал idle ~ вчт. свободный канал ~ путь, источник;
    the information was received through the usual channels информация была получена обычным путем input ~ вчт. входной канал input-output ~ вчт. канал ввода-вывода interconnection ~ вчт. соединительный канал interface ~ вчт. интерфейсный канал interrupt ~ вчт. прерываемый канал leased ~ вчт. арендуемый канал logical ~ вчт. логический канал logical ~ number вчт. номер логического канала lossless ~ вчт. канал без потерь main ~ основной канал multiaccess broadcast ~ широковещательный коллективный канал multiplex ~ вчт. мультиплексный канал noiseless ~ вчт. канал без помех noisy ~ вчт. канал с помехами noncooperative ~s вчт. каналы с раздельным обслуживанием occupied ~ вчт. занятый канал one-way only ~ вчт. однонаправленный канал optical communication ~ оптический канал связи output ~ вчт. выходной канал primary ~ вчт. основной канал public service ~ канал общего пользования randomly varying ~ вчт. канал со случайными характеристиками reverse ~ вчт. обратный канал ~ проводить канал;
    рыть канаву;
    the river has channelled its way through the rocks река проложила себе путь в скалах satellite ~ вчт. спутниковый канал secondary ~ вчт. дополнительный канал selector ~ вчт. селекторный канал service ~ вчт. канал обслуживания service ~ вчт. обслуживающий канал special service ~ специализированный канал обслуживания standard ~ вчт. стандартный канал time-derived ~ вчт. канал с временным разделением time-varying ~ вчт. канал с переменными во времени характеристиками timing ~ вчт. канал синхронизации transmission ~ вчт. канал передачи unidirectional ~ вчт. однонаправленный канал variable ~ вчт. канал с переменными характеристиками variable ~s вчт. каналы с переменными характеристиками virtual ~ вчт. виртуальный канал voice ~ вчт. речевой канал

    Большой англо-русский и русско-английский словарь > channel

  • 14 channel

    [ˈtʃænl]
    analog channel вчт. аналоговый канал back channel вчт. обратный канал backward channel вчт. обратный канал block multiplexer channel вчт. блок-мультиплексный канал broadband channel широкополосный канал buffered channel вчт. буферизованный канал bypass channel вчт. обходной канал bypass channel вчт. параллельный канал byte-at-a-time channel вчт. канал с побайтовым обменом byte-multiplexer channel вчт. байт-мультиплексный канал channel стр. делать выемки или пазы; channel off расходиться (в разных направлениях); растекаться channel тех. желоб; выемка; паз, шпунт; швеллер channel радио звуковой тракт channel информационный канал channel источник channel канал; русло; фарватер; проток channel вчт. канал channel канал channel канал передачи channel канал связи channel проводить канал; рыть канаву; the river has channelled its way through the rocks река проложила себе путь в скалах channel проводить канал channel пролив; the (English) Channel Ла-Манш channel пролив; the (English) Channel Ла-Манш channel пролив channel пускать по каналу; перен. направлять в определенное русло channel путь, источник; the information was received through the usual channels информация была получена обычным путем channel путь, источник, средство channel путь channel сток; сточная канава channel control block вчт. блок управления каналом channel of distribution канал распределения channel of distribution средство распределения channel of sales канал сбыта channel стр. делать выемки или пазы; channel off расходиться (в разных направлениях); растекаться channel program block вчт. блок канальной программы channel status word вчт. слово состояния канала channel waiting queue вчт. очередь к каналу channels in series вчт. последовательные каналы clock channel вчт. канал синхронизации communication channel вчт. канал связи cooperative channels вчт. каналы производящие совместное обслуживание cooperative channels вчт. объединенные каналы covert channel вчт. незащищенный канал data channel вчт. канал передачи данных data communication channel вчт. канал передачи данных data link channel вчт. канал передачи данных data transfer channel вчт. канал передачи данных dedicated channel вчт. выделенный канал dedicated channel вчт. специальный канал direct channel вчт. прямой канал discrete channel вчт. дискретный канал distribution channel канал распределения duplex channel вчт. дуплексный канал fast channel вчт. быстрый канал forward channel вчт. прямой канал обмена free channel вчт. незанятый канал free channel вчт. свободный канал full channel вчт. занятый канал half-duplex channel вчт. полудуплексный канал idle channel вчт. незанятый канал idle channel вчт. свободный канал channel путь, источник; the information was received through the usual channels информация была получена обычным путем input channel вчт. входной канал input-output channel вчт. канал ввода-вывода interconnection channel вчт. соединительный канал interface channel вчт. интерфейсный канал interrupt channel вчт. прерываемый канал leased channel вчт. арендуемый канал logical channel вчт. логический канал logical channel number вчт. номер логического канала lossless channel вчт. канал без потерь main channel основной канал multiaccess broadcast channel широковещательный коллективный канал multiplex channel вчт. мультиплексный канал noiseless channel вчт. канал без помех noisy channel вчт. канал с помехами noncooperative channels вчт. каналы с раздельным обслуживанием occupied channel вчт. занятый канал one-way only channel вчт. однонаправленный канал optical communication channel оптический канал связи output channel вчт. выходной канал primary channel вчт. основной канал public service channel канал общего пользования randomly varying channel вчт. канал со случайными характеристиками reverse channel вчт. обратный канал channel проводить канал; рыть канаву; the river has channelled its way through the rocks река проложила себе путь в скалах satellite channel вчт. спутниковый канал secondary channel вчт. дополнительный канал selector channel вчт. селекторный канал service channel вчт. канал обслуживания service channel вчт. обслуживающий канал special service channel специализированный канал обслуживания standard channel вчт. стандартный канал time-derived channel вчт. канал с временным разделением time-varying channel вчт. канал с переменными во времени характеристиками timing channel вчт. канал синхронизации transmission channel вчт. канал передачи unidirectional channel вчт. однонаправленный канал variable channel вчт. канал с переменными характеристиками variable channels вчт. каналы с переменными характеристиками virtual channel вчт. виртуальный канал voice channel вчт. речевой канал

    English-Russian short dictionary > channel

  • 15 variable channel

    Универсальный англо-русский словарь > variable channel

  • 16 Tc

    1. функция передачи
    2. управление передачей
    3. удельная теплопроводность
    4. третичный центр
    5. техническое сотрудничество
    6. Технический комитет по стандартизации в области телекоммуникаций (входит в состав ANSI)
    7. термоэлектрический ток
    8. термопара
    9. температурная компенсация
    10. телекоммуникационный шкаф
    11. тандемное соединение
    12. со стандартными техническими характеристиками
    13. регулирование турбины
    14. подуровень конвергенции передачи
    15. подсистема транзакций
    16. период времени в часах, относящийся к работе компрессора
    17. отключающая катушка
    18. одновальная многоцилиндровая (турбина)
    19. общее содержание углерода
    20. нестационарные условия
    21. независимый расцепитель
    22. лужёная медь
    23. конвергенция передачи
    24. код магистрали
    25. канал для транспортировки отработавшего ядерного топлива на АЭС
    26. испытуемый провод
    27. испытательный центр
    28. испытательная камера
    29. закрытие с выдержкой времени
    30. время подтверждения

     

    время подтверждения

    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

     

    закрытие с выдержкой времени

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    испытательная камера

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    • электротехника, основные понятия

    EN

     

    испытательный центр

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    испытуемый провод

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    • электротехника, основные понятия

    EN

     

    канал для транспортировки отработавшего ядерного топлива на АЭС

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    код магистрали
    Цифра или комбинация цифр, не включающая в себя национальный (магистральный) префикс, которая идентифицирует зону нумерации в пределах страны (или группы стран, входящих в план единой нумерации или принадлежащих к конкретной географической зоне). Код магистрали должен располагаться перед номером вызываемого абонента, если вызывающий и вызываемый абоненты находятся в разных зонах нумерации. Код магистрали является частным случаем применением национального кода назначения (NDC) (МСЭ-Т Е.164).
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

     

    конвергенция передачи
    TC размещается между физической средой и клиентами G-PON. Уровень TC состоит из подуровня формирования кадра GTC и подуровня адаптации TC (МСЭ-Т G.998.3).
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

     

    лужёная медь

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    • электротехника, основные понятия

    EN

     

    независимый расцепитель
    Расцепитель, вызывающий срабатывание аппарата при включении его реагирующего органа другим аппаратом в электрическую цепь с заданными параметрами.
    [ ГОСТ 17703-72]

    независимый расцепитель
    Расцепитель, управляемый источником напряжения.
    МЭК 60050 (441-16-41).
    Примечание. Источник напряжения может быть независимым от напряжения в главной цепи.
    [ ГОСТ Р 50030. 1-2000 ( МЭК 60947-1-99) ]

    EN

    shunt release
    a release energized by a source of voltage
    NOTE The source of voltage may be independent of the voltage of the main circuit.
    [IEC 62271-100, ed. 2.0 (2008-04)]

    FR

    déclencheur shunt
    déclencheur alimenté par une source de tension
    NOTE La source de tension peut être indépendante de la tension du circuit principal.
    [IEC 62271-100, ed. 2.0 (2008-04)]


    Параллельные тексты EN-RU

    The shunt trip opens the mechanism in response to an externally applied voltage signal.
    [LS Industrial Systems]

    Независимый расцепитель предназначен для дистанционного отключения автоматического выключателя. Отключение происходит при подаче на расцепитель напряжения.
    [Перевод Интент]

    The releases include coil clearing contacts that automatically clear the signal circuit when the breaker has tripped.
    [LS Industrial Systems]

    В состав данных расцепителей входит контакт, размыкающий цепь катушки независимого расцепителя при срабатывания автоматического выключателя.
    [Перевод Интент]

    Trip coil is a control device which trips a circuit breaker from remote place, when applying voltage continuously or instantaneously over 35ms to coil control terminals.
    [LS Industrial Systems]

    Независимый расцепитель предназначен для дистанционного отключения автоматического выключателя при подаче на зажимы катушки расцепителя напряжения непрерывно или в виде импульса длительностью не менее 35 мс.
    [Перевод Интент]

    Current shunt trips
    Used for remote tripping of an MCB, RCD, RCBO or isolating switch at the supply end.

    [Legrand]

    Независимые расцепители
    Предназначены для дистанционного отключения модульных автоматических выключателей, УДТ, АВДТ или выключателей-разъединителей, расположенных со стороны источника питания.

    [Перевод Интент]



    В низковольтных автоматических выключателеях независимый расцепитель является дополнительной принадлежностью, которая встраивается в гнездо автоматического выключателя

    3429_1
    Дополнительные (электрические) принадлежности, встраиваемые в специальные гнезда автоматического выключателя:
    1 - Левое гнездо;
    2 - Автоматический выключатель;
    3 - Правое гнездо.
    Рис. LS Industrial Systems

    Недопустимые, нерекомендуемые

    Тематики

    Классификация

    >>>

    EN

    FR

     

    нестационарные условия

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    общее содержание углерода

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    одновальная многоцилиндровая (турбина)

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    отключающая катушка
    катушка отключения


    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999]

    Тематики

    • электротехника, основные понятия

    Синонимы

    EN

     

    период времени в часах, относящийся к работе компрессора
    (напр. в системе теплонасосной установки)
    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    подсистема транзакций
    (МСЭ-Т Е.214).
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

     

    подуровень конвергенции передачи
    Подуровень физического уровня, обеспечивающий интерфейс между уровнем звена данных и подуровнем PMD (МСЭ-Т G.992.3; J.116).
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

     

    регулирование турбины

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    со стандартными техническими характеристиками

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    Технический комитет по стандартизации в области телекоммуникаций (входит в состав ANSI)
    См. www.tl.org.
    [Л.М. Невдяев. Телекоммуникационные технологии. Англо-русский толковый словарь-справочник. Под редакцией Ю.М. Горностаева. Москва, 2002]

    Тематики

    • электросвязь, основные понятия

    EN

    • TC

     

    тандемное соединение
    (МСЭ-T G.709/ Y.1331).
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

     

    телекоммуникационный шкаф
    -
    [ http://www.lanmaster.ru/SKS/DOKUMENT/568b.htm]

    телекоммуникационный шкаф
    Монтажный конструктив, имеющий в своем составе основание, боковые стенки, двери, крышку и направляющие, которые имеют отверстия, расположенные на стандартизованном расстоянии.
    Примечание. Направляющие используются для монтажа пассивного и активного оборудования, имеющего стандартизованное крепление.
    [Дмитрий Мацкевич. Справочное руководство. Основные понятия, требования, рекомендации и правила проектирования и инсталляции СКС LANMASTER. Версия 2.01]

    EN

    cabinet
    an enclosed construction intended for housing telecommunication components and equipment
    [ISO/IEC 14763-2, ed. 1.0 (2000-07)]

    См. телекоммуникационное помещение

    Тематики

    EN

     

    температурная компенсация
    термокомпенсация


    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    • электротехника, основные понятия

    Синонимы

    EN

     

    термопара
    Чувствительный элемент авиационного датчика температуры в виде двух разнородных электрических проводников, в котором развивается термоэлектродвижущая сила при разности температур между рабочими и свободными концами.
    [ ГОСТ 23220-78]

    Тематики

    EN

     

    термоэлектрический ток

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    • электротехника, основные понятия

    EN

     

    техническое сотрудничество

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    третичный центр

    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

     

    удельная теплопроводность

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    управление передачей

    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

     

    функция передачи
    (МСЭ-Т Y.1310).
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

    Англо-русский словарь нормативно-технической терминологии > Tc

  • 17 switching technology

    1. технология коммутации

     

    технология коммутации
    -
    [Интент]

    Современные технологии коммутации
    [ http://www.xnets.ru/plugins/content/content.php?content.84]

    Статья подготовлена на основании материалов опубликованных в журналах "LAN", "Сети и системы связи", в книге В.Олифер и Н.Олифер "Новые технологии и оборудование IP-сетей", на сайтах www.citforum.ru и опубликована в журнале "Компьютерные решения" NN4-6 за 2000 год.

    Введение

    На сегодня практически все организации, имеющие локальные сети, остановили свой выбор на сетях типа Ethernet. Данный выбор оправдан тем, что начало внедрения такой сети сопряжено с низкой стоимостью и простотой реализации, а развитие - с хорошей масштабируемостью и экономичностью.

    Бросив взгляд назад - увидим, что развитие активного оборудования сетей шло в соответствии с требованиями к полосе пропускания и надежности. Требования, предъявляемые к большей надежности, привели к отказу от применения в качестве среды передачи коаксиального кабеля и перевода сетей на витую пару. В результате такого перехода отказ работы соединения между одной из рабочих станций и концентратором перестал сказываться на работе других рабочих станций сети. Но увеличения производительности данный переход не принес, так как концентраторы используют разделяемую (на всех пользователей в сегменте) полосу пропускания. По сути, изменилась только физическая топология сети - с общей шины на звезду, а логическая топология по-прежнему осталась - общей шиной.

    Дальнейшее развитие сетей шло по нескольким путям:

    • увеличение скорости,
    • внедрение сегментирования на основе коммутации,
    • объединение сетей при помощи маршрутизации.

    Увеличение скорости при прежней логической топологии - общая шина, привело к незначительному росту производительности в случае большого числа портов.

    Большую эффективность в работе сети принесло сегментирование сетей с использованием технология коммутации пакетов. Коммутация наиболее действенна в следующих вариантах:

    Вариант 1, именуемый связью "многие со многими" – это одноранговые сети, когда одновременно существуют потоки данных между парами рабочих станций. При этом предпочтительнее иметь коммутатор, у которого все порты имеют одинаковую скорость, (см. Рисунок 1).

    5001

    Вариант 2, именуемый связью "один со многими" – это сети клиент-сервер, когда все рабочие станции работают с файлами или базой данных сервера. В данном случае предпочтительнее иметь коммутатор, у которого порты для подключения рабочих станций имеют одинаковую небольшую скорость, а порт, к которому подключается сервер, имеет большую скорость,(см. Рисунок 2).

    5002

    Когда компании начали связывать разрозненные системы друг с другом, маршрутизация обеспечивала максимально возможную целостность и надежность передачи трафика из одной сети в другую. Но с ростом размера и сложности сети, а также в связи со все более широким применением коммутаторов в локальных сетях, базовые маршрутизаторы (зачастую они получали все данные, посылаемые коммутаторами) стали с трудом справляться со своими задачами.

    Проблемы с трафиком, связанные с маршрутизацией, проявляются наиболее остро в средних и крупных компаниях, а также в деятельности операторов Internet, так как они вынуждены иметь дело с большими объемами IP-трафика, причем этот трафик должен передаваться своевременно и эффективно.

    С подключением настольных систем непосредственно к коммутаторам на 10/100 Мбит/с между ними и магистралью оказывается все меньше промежуточных устройств. Чем выше скорость подключения настольных систем, тем более скоростной должна быть магистраль. Кроме того, на каждом уровне устройства должны справляться с приходящим трафиком, иначе возникновения заторов не избежать.

    Рассмотрению технологий коммутации и посвящена данная статья.

    Коммутация первого уровня

    Термин "коммутация первого уровня" в современной технической литературе практически не описывается. Для начала дадим определение, с какими характеристиками имеет дело физический или первый уровень модели OSI:

    физический уровень определяет электротехнические, механические, процедурные и функциональные характеристики активации, поддержания и дезактивации физического канала между конечными системами. Спецификации физического уровня определяют такие характеристики, как уровни напряжений, синхронизацию изменения напряжений, скорость передачи физической информации, максимальные расстояния передачи информации, физические соединители и другие аналогичные характеристики.

    Смысл коммутации на первом уровне модели OSI означает физическое (по названию уровня) соединение. Из примеров коммутации первого уровня можно привести релейные коммутаторы некоторых старых телефонных и селекторных систем. В более новых телефонных системах коммутация первого уровня применяется совместно с различными способами сигнализации вызовов и усиления сигналов. В сетях передачи данных данная технология применяется в полностью оптических коммутаторах.

    Коммутация второго уровня

    Рассматривая свойства второго уровня модели OSI и его классическое определение, увидим, что данному уровню принадлежит основная доля коммутирующих свойств.

    Определение. Канальный уровень (формально называемый информационно-канальным уровнем) обеспечивает надежный транзит данных через физический канал. Канальный уровень решает вопросы физической адресации (в противоположность сетевой или логической адресации), топологии сети, линейной дисциплины (каким образом конечной системе использовать сетевой канал), уведомления о неисправностях, упорядоченной доставки блоков данных и управления потоком информации.

    На самом деле, определяемая канальным уровнем модели OSI функциональность служит платформой для некоторых из сегодняшних наиболее эффективных технологий. Большое значение функциональности второго уровня подчеркивает тот факт, что производители оборудования продолжают вкладывать значительные средства в разработку устройств с такими функциями.

    С технологической точки зрения, коммутатор локальных сетей представляет собой устройство, основное назначение которого - максимальное ускорение передачи данных за счет параллельно существующих потоков между узлами сети. В этом - его главное отличие от других традиционных устройств локальных сетей – концентраторов (Hub), предоставляющих всем потокам данных сети всего один канал передачи данных.

    Коммутатор позволяет передавать параллельно несколько потоков данных c максимально возможной для каждого потока скоростью. Эта скорость ограничена физической спецификацией протокола, которую также часто называют "скоростью провода". Это возможно благодаря наличию в коммутаторе большого числа центров обработки и продвижения кадров и шин передачи данных.

    Коммутаторы локальных сетей в своем основном варианте, ставшем классическим уже с начала 90-х годов, работают на втором уровне модели OSI, применяя свою высокопроизводительную параллельную архитектуру для продвижения кадров канальных протоколов. Другими словами, ими выполняются алгоритмы работы моста, описанные в стандартах IEEE 802.1D и 802.1H. Также они имеют и много других дополнительных функций, часть которых вошла в новую редакцию стандарта 802.1D-1998, а часть остается пока не стандартизованной.

    Коммутаторы ЛВС отличаются большим разнообразием возможностей и, следовательно, цен - стоимость 1 порта колеблется в диапазоне от 50 до 1000 долларов. Одной из причин столь больших различий является то, что они предназначены для решения различных классов задач. Коммутаторы высокого класса должны обеспечивать высокую производительность и плотность портов, а также поддерживать широкий спектр функций управления. Простые и дешевые коммутаторы имеют обычно небольшое число портов и не способны поддерживать функции управления. Одним из основных различий является используемая в коммутаторе архитектура. Поскольку большинство современных коммутаторов работают на основе патентованных контроллеров ASIC, устройство этих микросхем и их интеграция с остальными модулями коммутатора (включая буферы ввода-вывода) играет важнейшую роль. Контроллеры ASIC для коммутаторов ЛВС делятся на 2 класса - большие ASIC, способные обслуживать множество коммутируемых портов (один контроллер на устройство) и небольшие ASIC, обслуживающие по несколько портов и объединяемые в матрицы коммутации.

    Существует 3 варианта архитектуры коммутаторов:
     

    На рисунке 3 показана блок-схема коммутатора с архитектурой, используемой для поочередного соединения пар портов. В любой момент такой коммутатор может обеспечить организацию только одного соединения (пара портов). При невысоком уровне трафика не требуется хранение данных в памяти перед отправкой в порт назначения - такой вариант называется коммутацией на лету cut-through. Однако, коммутаторы cross-bar требуют буферизации на входе от каждого порта, поскольку в случае использования единственно возможного соединения коммутатор блокируется (рисунок 4). Несмотря на малую стоимость и высокую скорость продвижения на рынок, коммутаторы класса cross-bar слишком примитивны для эффективной трансляции между низкоскоростными интерфейсами Ethernet или token ring и высокоскоростными портами ATM и FDDI.

    5003

    5004

    Коммутаторы с разделяемой памятью имеют общий входной буфер для всех портов, используемый как внутренняя магистраль устройства (backplane). Буферизагия данных перед их рассылкой (store-and-forward - сохранить и переслать) приводит к возникновению задержки. Однако, коммутаторы с разделяемой памятью, как показано на рисунке 5 не требуют организации специальной внутренней магистрали для передачи данных между портами, что обеспечивает им более низкую цену по сравнению с коммутаторами на базе высокоскоростной внутренней шины.

    5005

    На рисунке 6 показана блок-схема коммутатора с высокоскоростной шиной, связывающей контроллеры ASIC. После того, как данные преобразуются в приемлемый для передачи по шине формат, они помещаются на шину и далее передаются в порт назначения. Поскольку шина может обеспечивать одновременную (паралельную) передачу потока данных от всех портов, такие коммутаторы часто называют "неблокируемыми" (non-blocking) - они не создают пробок на пути передачи данных.

    5006

    Применение аналогичной параллельной архитектуры для продвижения пакетов сетевых протоколов привело к появлению коммутаторов третьего уровня модели OSI.

    Коммутация третьего уровня

    В продолжении темы о технологиях коммутации рассмотренных в предыдущем номера повторим, что применение параллельной архитектуры для продвижения пакетов сетевых протоколов привело к появлению коммутаторов третьего уровня. Это позволило существенно, в 10-100 раз повысить скорость маршрутизации по сравнению с традиционными маршрутизаторами, в которых один центральный универсальный процессор выполняет программное обеспечение маршрутизации.

    По определению Сетевой уровень (третий) - это комплексный уровень, который обеспечивает возможность соединения и выбор маршрута между двумя конечными системами, подключенными к разным "подсетям", которые могут находиться в разных географических пунктах. В данном случае "подсеть" это, по сути, независимый сетевой кабель (иногда называемый сегментом).

    Коммутация на третьем уровне - это аппаратная маршрутизация. Традиционные маршрутизаторы реализуют свои функции с помощью программно-управляемых процессоров, что будем называть программной маршрутизацией. Традиционные маршрутизаторы обычно продвигают пакеты со скоростью около 500000 пакетов в секунду. Коммутаторы третьего уровня сегодня работают со скоростью до 50 миллионов пакетов в секунду. Возможно и дальнейшее ее повышение, так как каждый интерфейсный модуль, как и в коммутаторе второго уровня, оснащен собственным процессором продвижения пакетов на основе ASIC. Так что наращивание количества модулей ведет к наращиванию производительности маршрутизации. Использование высокоскоростной технологии больших заказных интегральных схем (ASIC) является главной характеристикой, отличающей коммутаторы третьего уровня от традиционных маршрутизаторов. Коммутаторы 3-го уровня делятся на две категории: пакетные (Packet-by-Packet Layer 3 Switches, PPL3) и сквозные (Cut-Through Layer 3 Switches, CTL3). PPL3 - означает просто быструю маршрутизацию (Рисунок_7). CTL3 – маршрутизацию первого пакета и коммутацию всех остальных (Рисунок 8).

    5007

    5008

    У коммутатора третьего уровня, кроме реализации функций маршрутизации в специализированных интегральных схемах, имеется несколько особенностей, отличающих их от традиционных маршрутизаторов. Эти особенности отражают ориентацию коммутаторов 3-го уровня на работу, в основном, в локальных сетях, а также последствия совмещения в одном устройстве коммутации на 2-м и 3-м уровнях:
     

    • поддержка интерфейсов и протоколов, применяемых в локальных сетях,
    • усеченные функции маршрутизации,
    • обязательная поддержка механизма виртуальных сетей,
    • тесная интеграция функций коммутации и маршрутизации, наличие удобных для администратора операций по заданию маршрутизации между виртуальными сетями.

    Наиболее "коммутаторная" версия высокоскоростной маршрутизации выглядит следующим образом (рисунок 9). Пусть коммутатор третьего уровня построен так, что в нем имеется информация о соответствии сетевых адресов (например, IP-адресов) адресам физического уровня (например, MAC-адресам) Все эти МАС-адреса обычным образом отображены в коммутационной таблице, независимо от того, принадлежат ли они данной сети или другим сетям.

    5009

    Первый коммутатор, на который поступает пакет, частично выполняет функции маршрутизатора, а именно, функции фильтрации, обеспечивающие безопасность. Он решает, пропускать или нет данный пакет в другую сеть Если пакет пропускать нужно, то коммутатор по IP-адресу назначения определяет МАС-адрес узла назначения и формирует новый заголовок второго уровня с найденным МАС-адресом. Затем выполняется обычная процедура коммутации по данному МАС-адресу с просмотром адресной таблицы коммутатора. Все последующие коммутаторы, построенные по этому же принципу, обрабатывают данный кадр как обычные коммутаторы второго уровня, не привлекая функций маршрутизации, что значительно ускоряет его обработку. Однако функции маршрутизации не являются для них избыточными, поскольку и на эти коммутаторы могут поступать первичные пакеты (непосредственно от рабочих станций), для которых необходимо выполнять фильтрацию и подстановку МАС-адресов.

    Это описание носит схематический характер и не раскрывает способов решения возникающих при этом многочисленных проблем, например, проблемы построения таблицы соответствия IP-адресов и МАС-адресов

    Примерами коммутаторов третьего уровня, работающих по этой схеме, являются коммутаторы SmartSwitch компании Cabletron. Компания Cabletron реализовала в них свой протокол ускоренной маршрутизации SecureFast Virtual Network, SFVN.

    Для организации непосредственного взаимодействия рабочих станций без промежуточного маршрутизатора необходимо сконфигурировать каждую из них так, чтобы она считала собственный интерфейс маршрутизатором по умолчанию. При такой конфигурации станция пытается самостоятельно отправить любой пакет конечному узлу, даже если этот узел находится в другой сети. Так как в общем случае (см. рисунок 10) станции неизвестен МАС-адрес узла назначения, то она генерирует соответствующий ARP-запрос, который перехватывает коммутатор, поддерживающий протокол SFVN. В сети предполагается наличие сервера SFVN Server, являющегося полноценным маршрутизатором и поддерживающего общую ARP-таблицу всех узлов SFVN-сети. Сервер возвращает коммутатору МАС-адрес узла назначения, а коммутатор, в свою очередь, передает его исходной станции. Одновременно сервер SFVN передает коммутаторам сети инструкции о разрешении прохождения пакета с МАС-адресом узла назначения через границы виртуальных сетей. Затем исходная станция передает пакет в кадре, содержащем МАС-адрес узла назначения. Этот кадр проходит через коммутаторы, не вызывая обращения к их блокам маршрутизации. Отличие протокола SFVN компании Cabletron от - описанной выше общей схемы в том, что для нахождения МАС-адреса по IP-адресу в сети используется выделенный сервер.

    5010

    Протокол Fast IP компании 3Com является еще одним примером реализации подхода с отображением IP-адреса на МАС-адрес. В этом протоколе основными действующими лицами являются сетевые адаптеры (что не удивительно, так как компания 3Com является признанным лидером в производстве сетевых адаптеров Ethernet) С одной стороны, такой подход требует изменения программного обеспечения драйверов сетевых адаптеров, и это минус Но зато не требуется изменять все остальное сетевое оборудование.

    При необходимости передать пакет узлу назначения другой сети, исходный узел в соответствии с технологией Fast IP должен передать запрос по протоколу NHRP (Next Hop Routing Protocol) маршрутизатору сети. Маршрутизатор переправляет этот запрос узлу назначения, как обычный пакет Узел назначения, который также поддерживает Fast IP и NHRP, получив запрос, отвечает кадром, отсылаемым уже не маршрутизатору, а непосредственно узлу-источнику (по его МАС-адресу, содержащемуся в NHRP-запросе). После этого обмен идет на канальном уровне на основе известных МАС-адресов. Таким образом, снова маршрутизировался только первый пакет потока (как на рисунке 9 кратковременный поток), а все остальные коммутировались (как на рисунке 9 долговременный поток).

    Еще один тип коммутаторов третьего уровня — это коммутаторы, работающие с протоколами локальных сетей типа Ethernet и FDDI. Эти коммутаторы выполняют функции маршрутизации не так, как классические маршрутизаторы. Они маршрутизируют не отдельные пакеты, а потоки пакетов.

    Поток — это последовательность пакетов, имеющих некоторые общие свойства. По меньшей мере, у них должны совпадать адрес отправителя и адрес получателя, и тогда их можно отправлять по одному и тому же маршруту. Если классический способ маршрутизации использовать только для первого пакета потока, а все остальные обрабатывать на основании опыта первого (или нескольких первых) пакетов, то можно значительно ускорить маршрутизацию всего потока.

    Рассмотрим этот подход на примере технологии NetFlow компании Cisco, реализованной в ее маршрутизаторах и коммутаторах. Для каждого пакета, поступающего на порт маршрутизатора, вычисляется хэш-функция от IP-адресов источника, назначения, портов UDP или TCP и поля TOS, характеризующего требуемое качество обслуживания. Во всех маршрутизаторах, поддерживающих данную технологию, через которые проходит данный пакет, в кэш-памяти портов запоминается соответствие значения хэш-функции и адресной информации, необходимой для быстрой передачи пакета следующему маршрутизатору. Таким образом, образуется квазивиртуальный канал (см. Рисунок 11), который позволяет быстро передавать по сети маршрутизаторов все последующие пакеты этого потока. При этом ускорение достигается за счет упрощения процедуры обработки пакета маршрутизатором - не просматриваются таблицы маршрутизации, не выполняются ARP-запросы.

    5011

    Этот прием может использоваться в маршрутизаторах, вообще не поддерживающих коммутацию, а может быть перенесен в коммутаторы. В этом случае такие коммутаторы тоже называют коммутаторами третьего уровня. Примеров маршрутизаторов, использующих данный подход, являются маршрутизаторы Cisco 7500, а коммутаторов третьего уровня — коммутаторы Catalyst 5000 и 5500. Коммутаторы Catalyst выполняют усеченные функции описанной схемы, они не могут обрабатывать первые пакеты потоков и создавать новые записи о хэш-функциях и адресной информации потоков. Они просто получают данную информацию от маршрутизаторов 7500 и обрабатывают пакеты уже распознанных маршрутизаторами потоков.

    Выше был рассмотрен способ ускоренной маршрутизации, основанный на концепции потока. Его сущность заключается в создании квазивиртуальных каналов в сетях, которые не поддерживают виртуальные каналы в обычном понимании этого термина, то есть сетях Ethernet, FDDI, Token Ring и т п. Следует отличать этот способ от способа ускоренной работы маршрутизаторов в сетях, поддерживающих технологию виртуальных каналов — АТМ, frame relay, X 25. В таких сетях создание виртуального канала является штатным режимом работы сетевых устройств. Виртуальные каналы создаются между двумя конечными точками, причем для потоков данных, требующих разного качества обслуживания (например, для данных разных приложений) может создаваться отдельный виртуальный канал. Хотя время создания виртуального канала существенно превышает время маршрутизации одного пакета, выигрыш достигается за счет последующей быстрой передачи потока данных по виртуальному каналу. Но в таких сетях возникает другая проблема — неэффективная передача коротких потоков, то есть потоков, состоящих из небольшого количества пакетов (классический пример — пакеты протокола DNS).

    Накладные расходы, связанные с созданием виртуального канала, приходящиеся на один пакет, снижаются при передаче объемных потоков данных. Однако они становятся неприемлемо высокими при передаче коротких потоков. Для того чтобы эффективно передавать короткие потоки, предлагается следующий вариант, при передаче нескольких первых пакетов выполняется обычная маршрутизация. Затем, после того как распознается устойчивый поток, для него строится виртуальный канал, и дальнейшая передача данных происходит с высокой скоростью по этому виртуальному каналу. Таким образом, для коротких потоков виртуальный канал вообще не создается, что и повышает эффективность передачи.

    По такой схеме работает ставшая уже классической технология IP Switching компании Ipsilon. Для того чтобы сети коммутаторов АТМ передавали бы пакеты коротких потоков без установления виртуального канала, компания Ipsilon предложила встроить во все коммутаторы АТМ блоки IP-маршрутизации (рисунок 12), строящие обычные таблицы маршрутизации по обычным протоколам RIP и OSPF.

    5012

    Компания Cisco Systems выдвинула в качестве альтернативы технологии IP Switching свою собственную технологию Tag Switching, но она не стала стандартной. В настоящее время IETF работает над стандартным протоколом обмена метками MPLS (Multi-Protocol Label Switching), который обобщает предложение компаний Ipsilon и Cisco, а также вносит некоторые новые детали и механизмы. Этот протокол ориентирован на поддержку качества обслуживания для виртуальных каналов, образованных метками.

    Коммутация четвертого уровня

    Свойства четвертого или транспортного уровня модели OSI следующие: транспортный уровень обеспечивает услуги по транспортировке данных. В частности, заботой транспортного уровня является решение таких вопросов, как выполнение надежной транспортировки данных через объединенную сеть. Предоставляя надежные услуги, транспортный уровень обеспечивает механизмы для установки, поддержания и упорядоченного завершения действия виртуальных каналов, систем обнаружения и устранения неисправностей транспортировки и управления информационным потоком (с целью предотвращения переполнения данными из другой системы).

    Некоторые производители заявляют, что их системы могут работать на втором, третьем и даже четвертом уровнях. Однако рассмотрение описания стека TCP/IP (рисунок 1), а также структуры пакетов IP и TCP (рисунки 2, 3), показывает, что коммутация четвертого уровня является фикцией, так как все относящиеся к коммутации функции осуществляются на уровне не выше третьего. А именно, термин коммутация четвертого уровня с точки зрения описания стека TCP/IP противоречий не имеет, за исключением того, что при коммутации должны указываться адреса компьютера (маршрутизатора) источника и компьютера (маршрутизатора) получателя. Пакеты TCP имеют поля локальный порт отправителя и локальный порт получателя (рисунок 3), несущие смысл точек входа в приложение (в программу), например Telnet с одной стороны, и точки входа (в данном контексте инкапсуляции) в уровень IP. Кроме того, в стеке TCP/IP именно уровень TCP занимается формированием пакетов из потока данных идущих от приложения. Пакеты IP (рисунок 2) имеют поля адреса компьютера (маршрутизатора) источника и компьютера (маршрутизатора) получателя и следовательно могут наряду с MAC адресами использоваться для коммутации. Тем не менее, название прижилось, к тому же практика показывает, что способность системы анализировать информацию прикладного уровня может оказаться полезной — в частности для управления трафиком. Таким образом, термин "зависимый от приложения" более точно отражает функции так называемых коммутаторов четвертого уровня.

    5013

    5014

    5015

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > switching technology

  • 18 transport channel

    1. транспортный канал
    2. канал транспортировки

     

    канал транспортировки
    Каналы, предоставляемые Уровню 2 физическим уровнем для транспортировки данных между равноправными объектами Уровня 1, называются каналами транспортировки. Различные типы транспортных каналов определяются тем, как и с какими характеристиками передаются данные на физическом уровне, например тем, используются ли выделенные или общие физические каналы. (МСЭ-Т Q.1741).
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

     

    транспортный канал
    Канал, предоставляющий услуги физического уровня для более высоких уровней. В зависимости от назначения транспортные каналы подразделяются на общие и выделенные.
    [Л.М.Невдяев. Мобильная связь 3-го поколения. Москва, 2000 г.]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > transport channel

  • 19 variable channel

    мат. канал с переменными характеристиками

    Большой англо-русский и русско-английский словарь > variable channel

  • 20 FEC

    1) Forward Error Correction - прямая коррекция ошибок (упреждающее исправление ошибок)
    класс методов для контроля ошибок при односторонней передаче в телекоммуникационных системах. С данными передаётся дополнительная информация для их проверки и исправления при необходимости
    см. тж. ECC
    2) Fast EtherChannel - быстрый Ethernet-канал, технология FEC - см. EtherChannel
    3) Forwarding Equivalence Class - класс эквивалентности при пересылке [сетевых пакетов данных], класс FEC
    класс пакетов в сети с мультипротокольной коммутацией по меткам ( MPLS); пакеты с идентичными или схожими (близкими) характеристиками могут пересылаться аналогичным образом, то есть могут иметь одинаковое значение метки MPLS
    см. тж. label, packet

    Англо-русский толковый словарь терминов и сокращений по ВТ, Интернету и программированию. > FEC

См. также в других словарях:

  • Канал — дублёр Невы — Протекает по территории Лениградской области Вход Ладожское озеро Устье Финский залив Длина 340 км …   Википедия

  • Канал-дублёр Невы — Протекает по территории Лениградской области Вход Ладожское озеро Устье Финский залив Длина 340 км Высота входа 4  …   Википедия

  • Канал-дублер Невы — Канал дублёр Невы Протекает по территории Лениградской области Вход Ладожское озеро Устье Финский залив Длина 340 км Высота входа 4  …   Википедия

  • Канал - дублёр Невы — Протекает по территории Лениградской области Вход Ладожское озеро Устье Финский залив Длина 340 км Высота входа 4  …   Википедия

  • канал транспортировки — Каналы, предоставляемые Уровню 2 физическим уровнем для транспортировки данных между равноправными объектами Уровня 1, называются каналами транспортировки. Различные типы транспортных каналов определяются тем, как и с какими характеристиками… …   Справочник технического переводчика

  • Канал — Эта статья или часть статьи содержит информацию об ожидаемых событиях. Здесь описываются события, которые ещё не произошли …   Википедия

  • Канал (гидрография) — У этого термина существуют и другие значения, см. Канал. Канал имени Москвы …   Википедия

  • Морской канал (Санкт-Петербург) — У этого термина существуют и другие значения, см. Морской канал. Морской Канал …   Википедия

  • ГОСТ Р МЭК 60204-1-2007: Безопасность машин. Электрооборудование машин и механизмов. Часть 1. Общие требования — Терминология ГОСТ Р МЭК 60204 1 2007: Безопасность машин. Электрооборудование машин и механизмов. Часть 1. Общие требования оригинал документа: TN систем питания Испытания по методу 1 в соответствии с 18.2.2 могут быть проведены для каждой цепи… …   Словарь-справочник терминов нормативно-технической документации

  • ГОСТ 17657-79: Передача данных. Термины и определения — Терминология ГОСТ 17657 79: Передача данных. Термины и определения оригинал документа: 78. n кратная ошибка в цифровом сигнале данных n кратная ошибка Е. n fold error Группа из и ошибок в цифровом сигнале данных, при которой ошибочные единичные… …   Словарь-справочник терминов нормативно-технической документации

  • ГОСТ Р 53953-2010: Электросвязь железнодорожная. Термины и определения — Терминология ГОСТ Р 53953 2010: Электросвязь железнодорожная. Термины и определения оригинал документа: 39 (железнодорожная) телеграфная сеть: Сеть железнодорожной электросвязи, представляющая собой совокупность коммутационных станций и узлов,… …   Словарь-справочник терминов нормативно-технической документации

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»